
MATHEMATICS OF COMPUTATION, VOLUME 29, NUMBER 132 

OCTOBER 1975, PAGES 969-977 

Models of Difference Schemes for ut + u. 0 
by Partial Differential Equations* 

By G. W. Hedstrom** 

Abstract. It is well known that difference schemes for hyperbolic equations display dis- 

persion of waves. For a general dissipative difference scheme, we present a dispersive 

wave equation and show that the dispersions are essentially the same when the initial 

data is a step functioii. 

I. Introduction. For the equation ut + UX = 0, consider the difference scheme, 

(1 .1) V(X, t + At) = c1v(x + jh, t). 

We assume, of course, that the difference scheme is consistent. The scheme (1.1) is ex- 
plicit if the sum is over only a finite number of terms and implicit otherwise. The-sym- 
bol or amplification function for (1.1) is 

(1.2) GQ) = Ecjeijt. 

If 0Q, t) denotes the Fourier transform of v(x, t), then it is known ([1, p. 67] or [2]) 
that 

(1.3) DQ, nAt) = Gn(h )v(t, 0). 

If the difference scheme (1.1) is dissipative, that is, if 

1G(Q)l < exp{-yzoWs} (1t1 < ir) 

for some positive y0 and some even integer s, then either 

(1.4) G(Q) = exp{-ipt - ys + O(Itls+ ')} (11 0) 

or 

(1.5) G() = exp -ipt + i E OjV _ S + o(jtls+1)t (11 O) 

where p = At/h, Re y > 0, and the 0, are real. 
If we combine (1.5) and (1.3) and set t = nAt, we find that 

(1.6) 3(t, t) = exp t - it + (ip) 12 f3hi-'1t - (y/p)hs-l's + O(hslls+ 1)) v(Q 0). 
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It is easy to write down a partial differential equation for which the Fourier transform 
of the solution has a representation like (1.6), namely, 

s-1 

(1.7) u +u = E (131Ip)(hIi)-1iaulaxi - (y/p)(- 1)S/2hsasuIax 
r 

where i2 = - 1. In the case when (1.4) holds, we use 

(1.8) Ut + ux = - (y/P)(- l)s/2hs-lasuIaxs. 

For the Lax-Wendroff difference scheme [1, p. 302], 

v(x, t + At) = p(p - I)v(x + h, t)/2 + (1 - p2)(x, t) + p(p + I)v(x - h, t)/2, 

the symbol is 

G() = 1 - ip sin -p2 (1 - cost), 

so that for p < 1, Eq. (1.7) becomes 

ut + ux = - (h2 /6)(1 - p2)u,xx - (h3/8)p(1 - p2 )ux,x. 

Various authors have based stability analysis of (1.1) on the question of well- 
posedness of the Cauchy problem for (1.7), (1.8), or some similar equation; see, for ex- 
ample, the papers of Hirt [3], McGuire and Morris [4], and Janenko and Sokin [5]. Be- 
cause the response of difference schemes to step-function initial data is so important, 
Chin [6] and Lerat and Peyret [7], [8] have used (1.7) or (1.8) to approximate special 
difference schemes with step-function data. Though at first glance it may appear that 
(1.7) or (1.8) approximates (1.1) well only for smooth data, numerical experiments 
and Chin's proof [6] of a special case indicate that there is good agreement even in the 
case of step discontinuities. 

Our main result shows that for general dissipative schemes, there is good agree- 
ment between (1.7) or (1.8) and (1.1) for step-function initial data. 

THEOREM. Let the difference scheme (1.1) be dissipative, and let the symbol sat- 
isfy (1.5) with 1 < r < s, r odd, s even, f,3 (r < j < s) real, Or > O, and Re y > 0. 
Thus, the order of accuracy is r - 1 and the order of dissipation is s. Let u be the so- 
lution of (1.7) with initial data, 

u(x, 0) = v(x, 0) = (x > 0), 

(1.9) u(O, 0) = v(O, 0) = O, 

u(x, 0) = v(x, 0) = ? (x < 0). 

Then there exist positive constants C1, C2, c0, K 1, and K2 such that at grid points, 
.x, t = nAt, we have the error bounds, 

(1.10) Iu(X, t) - v(x, t)I < Clh2'r (IX-tIp 6 tn-(r-l)/r), 

Iu(x, t) - v(x, t)I < C2g(n, p(- 1 + x/t))exp{-nK1(P(- 1 + X/t))r/(rl1)}, 

(1.11) (tn-(r l)/r 6 (X -t) 6 cot) 

lu(x, t) - v(x, t)l < C2g(n, p(l - xlt))exp{- nK2(p(1 -x/t))s/(rl)} 

(1.12) ( coot < p(x - t) < - tn-(r-l )r 
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where 
Afn, co) = n- 1/2c)(4-r)/(2r-2) (0 < co < n-(r-l)/(s-0), 

g(n, co) = n V2co(2s+2-r)/(2r-2) (co > n-(r-I)/(s-1)) 

In the case when G satisfies (1.4), so that the order of accuracy is s - 1, then (1.10)- 

(1.12) are valid if u is the solution of (1.8) and if each r is replaced by s. In the un- 
likely situation when (1.5) holds with even r, estimates (1.10) and (1.12) are still valid, 
but there are oscillations ahead of the front as well as behind it, and (1.1 1) is replaced 
by 

lu(x, t) - v(x, t)l < C2g(n, p(- 1 + x/t))exp{-nK2(p(- 1 + x/t))sI(rl)} 

(tn-(r1l)/r < p(x - t) < cjot). 

Finally, if (1.5) holds with odd r and O < 0, there are oscillations ahead of the front 
only, and the exponential factors in the right-hand sides of (1.11) and (1.12) are ex- 
changed. 

The proof is given in Section 3 and is based on some saddle-point estimates given 
in Section 2. 

For the sake of comparison, we present the behavior of the solution of (1.1) with 
step-function initial data (1.9) under the condition that (1.5) holds with r odd, Or > 0. 
It follows from the work of Brenner and Thomee [9], Hedstrom [10, Theorem 5.3], 
and Serdjukova [11] that 

Iv(x, t)I ? C3 (px - tI < tn(rl)Ir) 

Iv(x, t) + ?I 6 C4n%(p(- 1 + x/t))r/(2 r2)expf-nK1(pP(-1 + X/t))r/(rl1)} 

(1.13) (tn(rl)Ir ? p(x - t) < co0t) 

Iu(x, t) - ?%1 < C4n 2(p(l -X/t))r/(2r2)exp{-nK2(p(1 -X/t))sI(r-l)} 

(-coot < p(x - t) <- tn-(r-l)/r). 

In fact, if O.,+ 1 0 0, these bounds and the bounds in the theorem are sharp, and the 
exponential factors are identical; only an oscillatory factor cos(ci + n k(p I I - xlt l)) is 
left out. Hence, we see that for Ip(x - t)l S tn-(r-1)I(s+ 1), u mimics v better than v 
mimics the solution of ut + uX = 0, but the reverse is true otherwise. It does not mat- 
ter, though, that u does not mimic v so well for Ip(x - t)l > tn-(r-1)/(s+ 1), because 
the exponential factors are then very small. 

We remark that there are equations other than (1.7) that one could consider. It 
is clear that the first dispersive term, (o3r/p)(h/i)r-1 aru/axr, should be kept; and it fol- 

lows from the role of s in (1.13) that we want the first dissipative term, 
- (- 1)0s2(y/p)hs-1 asu/axs. Thus, we should consider the equation, 

ut +ux = (Or Ip)(h/i) laru/axr -(-1)S2(,y/p)hs-lasuIaxsS 

Our methods may be easily applied to this equation. They show that if there is a dis- 
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persive coefficient f30 # 0 with r < j < s and if q is the smallest such index j, then 
(1 .10)-(1.12) still hold but with g(n, co) replaced by gl(n, C*), where 

g1(n, &,) = n-1/2 C&(4-r)/(2r-2) (0 < Co < n-(r-l)(q-2) 

g, (n, ci) = n /2 cJ(2 q-r)1(2 r-2 ) (w > n-(r-l )(q-2 )). 

Hence, in this case u approximates v better than v approximates the solution of ut + 

uX =O only for p I x - tl < tn-(r-l)q, and since the oscillatory region behind the wave 

[see (1.13)] extends back to p(x - t) = -tn-(r-l)/s, there is a significant region in 
which the approximation is not very good. It is for this reason that we use Eq. (1.7). 
Such considerations, letting s > oo, indicate that it is not a good idea to try to use a 
partial differential equation to mimic the oscillations of v if IG(Q)I 1. 

This paper was written to answer a question raised by C. K. Chu during the dis- 
cussion of a paper of Lerat and Peyret at the Fourth International Conference on Nu- 
merical Methods and Fluid Dynamics at Boulder, Colorado, in June 1974. 

II. Estimates of an Integral. We take the most interesting case, namely, we assume 
that the symbol satisfies (1.5) with r odd and O3r > 0. The other cases may be analyzed 
in the same way. We begin by making saddle-point estimates of an integral. 

LEMMA. Let t and f be analytic functions in the disc 11 < -r. Let t have Mac- 

laurin expansion, 
s-1 

(2.1) E pj s + 
r 

where 1 < r < s, r is odd, s is even, Or > O, each f,3 (r < j < s) is real, and Re y > O. 
Let If(Q)I < M for I0I < -r. For integers n, p > 0 and for real parameter co define the 

integral, 

Anp(co) = f $PfQ() exp{n(Q() - icot)} d#. 

Then there exist positive constants C5(p), C6(P), CO0, K1, and K2 such that 

(2.2) IAn p(co)I < MC5(p)n-(p+ l )Ir (Icil < n-(r-l)lr), 

IAn p(co)I < MC6(p)n /2 1c01(2p+2-r)/(2r-2)exp{- nic12jC0sI(r-1)} 

(2.4) 
(n-(r-l)lr 6C(o 6, Co 0) 

Proof We change the path of integration in the complex h-plane to make it pass 
through two saddle points of the function ?(t) - icot, that is, through solutions of the 

equation, 0'(t) - io = 0. As Icol 0, there are r - 1 saddle points of 0(Q) - icot giv- 
en by 

(2.5) = (co(rf3r))l/(rl) + 0(jC0j2/(r- 

one for each branch of the (r - I)st root. 
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Consider any fixed branch of the (r - I)st root. The function 4t) - iwt has Tay- 
lor series about to of the form, 

00 

(2.6) iwt- ft = bo(co) + 2 bj(co)(t - t )j- 
2 

It follows from (2.1) and (2.5) that as Icol 0, we have 

(2.7) b2(co) = ir(r-1)(;r/2)(CO/(r:r))(r-2)I(r-1) + o(Ic1) 

(2.8) Ib1(co)I = O(IWI(r-1)I(r-1)) (j = 3 4, . . . , r - 1), 

(2.9) br(CO) = ' O(IcolI 1(r-1 )). 

If Icol is small enough so that ItoI < i - 1, the radius of convergence of the series (2.6) 
is at least one. Hence, there is a constant C7 such that 

(2.10) 1b1(c)I < C7 (j = r + 1, r + 2, . ). 

Besides the constant term bo(co), the most important terms in (2.6) are b2(Co)(t - to)2 
and br(co)(t - toy. We see from (2.7) and (2.9) that we can choose a contour F 
through to on which 

Re (b 2(CO)) _- to)2 + br(COM - toy) -K3 1,1(r-2)1(r- 1) I - t 12 - K I4t -tIr 

for l&, < coo and for some positive constants w0, K3, and K4. It follows from (2.8) 
and (2.10) that on rl, the part of ro on which It - toI < C8 ItoI, we have 

(2.11) Re(Q(t) - ico) S Re bo(c) - K3 ICoI(r-2)/(r-l) - to12 - K4 It - toir 

for Icol < coo and for smaller positive constants co0, K3, and K4. We see from (2.11) 
that 

| Pf(t) exp{n(O(t) - icot)} dt 

(2.12) 2PM.f (Ito IP + 1t toIP)exp{n(Rebo(co)-K4 t to r)}dt 

S MC9 
- 1/r(IcoIP/(r-) + n-PIr) exp{n Re bo(co)} 

and 

| I P(t) exp{n(o(t) - icot)} dt 

? 2 PMf (ItolP + It - toIP) 

(2.13) *exp{n(Re bo (.) - K3 1c1(r-2)/(r-1) jt - to12)1 Idti 

? MCI on-/2 I,I-(r-2)/(2r-2)(I,I0P1(r-1) + n-P12 I&,-P(r-2)/(2r-2)) 

* exp{n Re bo(co)}. 
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It is clear that we should use (2.12) if Icol < n-(r-l)Ir, and (2.13) if n-(r-l)Ir < 

1X1 < So 
We want to use a contour joining - 7r to ir while going over the lowest possible 

saddle points, those with Re bo(w) as small as possible. If co < 0, we choose the path 
of integration F as in Fig. 1, passing through the saddle points that are closest to the 
real axis in the upper half-plane, and these are the highest points on the path. The case 
r = 9 and co < 0 is illustrated in Fig. 1, and the saddle points are denoted by crosses. 
Near the saddle points we choose r so that (2.11) holds. At these two saddle points 
we conclude from (2.5) that 
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(2.14) Re bo(cX) = Re(o(Qo) - ic0t) < -K, 1clrl(r1). 

The estimate (2.3) now follows from (2.13) and (2.14), and inequality (2.2) for c < 0 
follows from (2.12) and (2.14). 

If co > 0, the best path r to take from - ,r to ir has as its summits the two sad- 
dle points (2.5) nearest to the real axis. We choose r as in Fig. 2 so that (2.11) holds 
near the saddle points. It follows from (2.1) and (2.5) that for these two saddle points 

Im t0 = -(Re ys/(r - ))(rfr)-(Sl )/(r-1)cc(s-r)/(r-l)(1 + O(Ccl/(r-l))) 

as 1cXl O 0. Consequently, we see that for 0 < co < coo, there exists a positive num- 
ber K2 such that 

(2.15) Re bo(cc) = Re(oQo() - iccto) < - K2cs/(rI). 

We now obtain (2.4) from (2.13) and (2.15), and we obtain (2.2) for c > 0 from 
(2.12) and (2.15). This proves the Lemma. 

III. Proof of the Theorem. We again concentrate on the case when (1.5) holds 
with r odd and Or > 0; the other cases are proved similarly. The Fourier transform of 
the step-function initial data (1.9) is given by i(Q, 0) = i/b, so that (1.3) becomes 

(3.1) V(Q, n/At) = iGn(h0/I, 

while the solution of (1.7) with the same initial data has Fourier transform, 

(3.2) u(Q, t) = (i/) exp{t(- it + 0(ht)/(ph))}, 

where s-1 

r 

The difference w = u - v at time t = n"At is given by the inverse Fourier transform, 

(3.3) w(x, t) = 1/(27r)J (iQ, t) - viQ, t))eiX d#. 

We split the integral (3.3) into three parts: the central part, 

II = 1/(27r) Ih (u(Q, t) - 6Q, t)) e"X t 

the tail for the differential equation, 

I2 
= 1/(21r) JtI /1 u(, t)eiXt dS, 

and the tail for the difference scheme, 

I3 = - 1/(27T) |lt l)7/h v(Q, t)eixt dt,. 

We estimate II first. It follows from (1.6) and (3.2) that 

Ii = t/(2ir)f h5t5f(h ) exp{i(x - t) + nq(ht)} dS 

for some function f(?), which is bounded and analytic on the disc l?i< 7r, lf(<)l ? M. 
The substitution ? = hi transforms the integral into 
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I= t/(27rh)J tSf(?) exp{n(ip(- 1 + x/t)? + 0()))} d?. 

An application of the Lemma with c = p(l - x/t) and p = s shows that because 

(3.4) t/h = np, 

we have 

(3.5) III ?,MC,(s)p(27r)n-(s+1-r)Ir (piX - tl < tn-(r-l)/r), 

(3.6) II1 ?1 MC6(s)p/(27r)n1/2 Ip(l -x/t)I(2s+2-r)/(2r-2)exp{-nK Ip(l - x/t)lr/(r-l)} 

(tn-(rl)r p(x t) ot), 

III I MC6 (s)p/(27r)n'/2(p(l - X/t))(2s+2-r)/(2r-2)exp{_ nK2(p(l - x/t))sI(rl)} 

(3.7) 
( co0t ? p(x - t) S - tn-(r-1)Ir). 

We now estimate I2. By the change of variable ? = ht, it follows from (3.2) that 

I2 = i/(2 r) J exp{n(ip(- 1 + x/t)t + b())} d 

Consequently, we have 

(3.8) 'I21 S 1 /rf exp{- nyes} dT/l < Cl n-l /Sexp{- nyrs}. 

In the integral I3 we also make the substitution t = ht and obtain the representa- 
tion, 

I3 = -i/(27r) jl Gn(?) eixtIhdM/. 

It is clear from (1.2) that G is periodic with period 27r, so that at a grid point x we 
may rewrite I3 as 

I3 = J J Gn(?) I/(2 - 412 r2 )eiXtIh dt. 

Here, we have used the fact that exp{- 2rrijx/h} = 1 at a grid point x. We now use the 
Lemma with p = 1 and with M = l/((4j2 - 1)7r2) to show that 

(3.9) 1131 SC5(1)n-2/r (plx-tl ?tn-(r-l)r), 

II31 S C6(1)(p(- 1 + x/t))(4-r)/(2r-2)exp{-nKI(p((-1 + XIt))rI(r-l)}n-/2 

(3.10) 
(tn-(r-l)/r S p(x - t) < co0t), 

II31 S C6(l)(p(l - x/t))(4-r)/(2r-2)exp{- nK2(p(l - X/t))sI(rI n) 1/2 

(3.1 1) 

(-cot < p(x - t) S- tnf(r-1)/r). 

The theorem now follows from estimates (3.5)-(3.11). Note that for p Ix - ti < 

tn-(r-l)I(s-1), the largest contribution comes from the tail I3, while for 

tn i (rl)(s-l) Splx-tI co ot, the largest contribution comes from the central term I,. 
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